Maharaja Ranjit Singh College of Professional Sciences, Indore					
	Department of Biosciences				
		Lesson Plan - B. Sc. I Year (July 2020 - April 2021)			
	Subject - Chemistry - I Paper : Physical Chemistry				
		Teacher - Prof. Deepanshu Pandey			
Day/Lecture	Unit	Торіс			
1	Unit 1	A. Mathematical Concept :			
2		Logarithm relations (rules & types)			
3		Use of log table and antilog table in calculation			
4		Curve sketching (Straigth line and linear graphs), Calculation of slopes			
5		Differentiation of functions like Kx,sin x, log x			
6		Multiplication and division in differentiation			
7		maxima and minima			
8		partial differentiation, Integration of some useful/ relevent functions Factorials			
9 10		Probability			
10		Revision of chapter after completion of unit			
12		B. Gaseous States and Molecular Velocitites :			
12		Critical Phenomenon: PV isotherm of ideal gases			
13		Andrew's experiment			
15		Continuity of state			
16		Isotherms of van der waal's equation			
17		relationship between critical constants and vander waals constants			
18	Unit 1	Root mean square, average & most probable velocitites			
19	Unit 1	Qualitative discussion of the Maxwell's distribution of molecular velocities			
20	Unit 1	collision numbers, mean free path and collision diameter			
21	Unit 2	A. Liquid States : Intermolecular forces, structure of liquids, Liquid crystals			
22		Difference between liquid crystal, solid & liquid			
23		classification, structure of nematics and cholestric phases			
24		Thermography, & seven segment cell			
25		B. Solid State : Defination of space lattice, Unit cell			
26		Laws of crystallography : (a) Law of constancy of interfacial angles,			
27		(b) law of rationality of indices (c) law of symmetry			
28		Symmetry elements in crystal, ionic solid structures, Radius Ratio effect			
29 30		Coordination number, limitation of radius rule lattice defects			
30		Revision of chapter after completion of unit Chemical Kinetics : Chemical kinetics and its scope,rate of a reaction			
31		Factors affecting rate : Conc, temp., solvent, light, catalyst, pressure			
33		Dependence of rate on concentration,			
34		Mathematical characteristic of simple chemical reaction: Zero order, First order, Second, Pseudo			
35		half life and mean life, Determination of the order of reaction			
36		Differential method, half life method			
37	Unit 3	Determination of the order of reaction by integration method			
38		study of chemical kinetics by polarimetry			
39		study of chemical kinetics by spectrophotometery			
40		Effect of temperature on rate of reaction			
41		Arrhenius equation,Concept of activation energy			
42		Simple collision theory, transition state theory			
43		Revision of chapter after completion of unit			
44		Radioactivity and Nuclear Chemistry : Natural and artificial radioactivity			
45		radioactive radiations, detection and measurmentof radioactivity			
46		Group displacement law of soddy			
47		radioactive disintegration, nuclear reaction : nuclear fussion & nuclear fission			
48		half life period, isotopes, isobars and isomers			
49		application of radiochemistry Provision of about a star completion of unit			
50 51		Revision of chapter after completion of unit A. Chemical Equilibrium: Law of mass action, Equilibrium constant			
52		Le chatelier's Principles			
53		B. Colloidal Solutions : Classification, lyophilic and lyophobic colloids			
54		Properties : kinetics, optical			
55		Properties : electrical, coagulation			
56		Hardy- Schulze rule, Gold number			
57		emulsions, gels and sols			
58		application of colloids			
59		Revision of chapter after completion of unit			

	Μ	aharaja Ranjit Singh College of Professional Sciences, Indore			
		Department of Biosciences			
		Lesson Plan - B. Sc. I Year (July 2020 - April 2021)			
Subject - Chemistry - II Paper :Inorganic Chemistry					
		Teacher - Prof. Deepanshu Pandey			
Dor/L coture	Unit				
Day/Lecture		Topic (a) Atomic Structure : Dual Nature of matter, idea of de Broglie matter waves			
1					
2		Heisenberg uncertainity principle, atomic orbital			
3		Schrodinger wave equation, Significance of \bar{Y} and \bar{Y}			
4	Unit 1	quantum numbers, radial and angular wave functions			
5	Unit 1	probability distribution curves, shapes of s,p,d, orbitals			
6		Aufbau and pauli exclusion principles, Hund's multiplicity rule			
7		Electronic configuration of the elements, effective nulcear charge			
8		(b) Periodic Properties : Atomic and ionic radii, ionization energy			
9		electron affinity, electronegativity- defination, methods of determination or evaluation			
10		treands in periodic table and applications in predicting and explaing chemical behaviuor			
11		Revision after the completion of the unit.			
12		(a) Chemical Bonding Part I : Covalent Bond- Valence bond theory and its limitations			
13		directional characteristic of covalent bond			
14		various types of hybridization and shapes of simple inorganic molecules and ions			
15	Unit 2	Valence shell electron pair repulsion (VSEPR) theory to NH3			
16	Unit 2	Valence shell electron pair repulsion (VSEPR) theory to H3O,SF4,ClF3 and H2O			
17	Unit 2	MO theory, Homonuclear and heteronuclear (CO and NO)4 diatomic molecules			
18	Unit 2	multicenter bonding in elctron deficient molecules			
19	Unit 2	bond strength and bond energy			
20	Unit 3	(a) Chemical Bonding Part II : Ionic Solids : Ionic structures, radius ratio effect			
21		coordination number, limitation of radius ratio rule			
22		lattice defects, semi conductors, lattice energy			
23		Born Haber cycle,			
24		solvation energy & solubility of ionic solids			
25		polarizing power and polarisability of ions			
26		Fajan's rule, metallic bond-free electron, valence bond			
27		Band theories			
28		(b) Weak Interaction- Hydrogen bonding, van der waals forces			
29		Chemistry of Noble Gases: chemical properties of the noble gases			
30		chemistry of xenon			
31		structure and bonding in xenon compounds			
		1.S-Block Elements : Comparative study Li and Mg			
32					
33 34		diagonal relationships, slient features of hydrides, solvation and complexation			
		the dencies including their function in biosystemsan introduction to alkyls and aryls			
35		2.P-Block Elements I : Comparative study Be and Al			
36		diagonal relationship of groups 13-17 elements			
37	Unit 4	Compounds like hydrides, oxides			
38	Unit 4	oxyacids of groups 13-16			
39	Unit 4	halide of groups 13-16			
40	Unit 5	p-Block Elements part II: Hydrides of boron-diborane and higher boranes			
41		Hydrides of boron-diborane and higher boranes			
42	Unit 5	borazine borohydrides			
43		Fullerenes, Fluorocarbons			
44	Unit 5	silicates (structural principle)			
45	Unit 5	tetrasulphur tetranitride			
46		Basic properties of haolgens			
47	Unit 5	Interhalogens and polyhalides			
48	Unit 5	Revision after the completion of the unit.			
49					

	Ν	Iaharaja Ranjit Singh College of Professional Sciences, Indore				
	101	Department of Biosciences				
	Lesson Plan - B. Sc. I Year (July 2020 - April 2021)					
	Subject - Chemistry - III Paper :Organic Chemistry					
	T T •4	Teacher - Prof. Deepanshu Pandey				
Day/Lecture	Unit	Topic				
1		Structure and Bonding : Hybridization				
2		Bond lengths and bond angles, bond energy				
3		localized and delocalized chemical bond				
4		inclusion compounds, clatherates				
5		charge transfer complexes				
6		resonance,hyperconjugation				
7		inductive, electromeric, mesomeric and steric effect				
8		Mechanism of Organic Reaction: homolytic and heterolytic bond fission				
9		Types of reagents- electrophiles and nucleophiles				
10		Types of organic reaction, energy consideration				
11		Methods of determination of reaction mechanism(active intermediate products)				
12		isotopes effects, kinetics and stereochemical studies				
13		Revision on completion of the unit				
14		Alkanes and cycloalkanes: IUPAC nomenclature of branched and unbranched alkanes				
15		classification of alkanes, isomerism in alkanes				
16		methods of formation (Wurtz rxn, Kobe Rxn, Corey House Rxn, Decarboxylation)				
17	Unit 2					
18	Unit 2					
19		mechanism of free radical halogenation of alkanes				
20		cycloalkanes-nomenclature, methods of formation,				
21		chemical reaction, Baeyer strain theory and its limitation				
22		Theory of strainless rings				
23		The case of cyclopropane ring : Banana bonds				
24		conformation of cycloalkanes				
25		Revision on completion of the unit				
26	Unit 3	Alkene, Cycloalkenes, Dienes : Nomenclature of alkenes				
27		methods of formation - mechanism of dehydration of alcohols and dehydrogenation of alkyl halides				
28		ragioselectivity in alcohol dehydration				
29		The saytzeff rule				
30		Hofmann elimination				
31		physical properties and relative satbilities of alkenes				
32	Unit 3	Chemical reaction of alkenes- mechanism involved in hydrogenation				
33		electrophilic and free radical addition				
34		Markownikoff's rule				
35		hydroboration- oxidation, oxymercuration reduction				
36		Epoxidation, ozonolysis				
37	Unit 3					
38	Unit 3					
39		application of ethylene and propene				
40		Methods of formation, conformation and chemical reactions of cycloalkanes				
41		Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes				
42		structure of allenes and butadiene				
43		methods of formation				
44		polymerisation				
45	Unit 3					
46		Diels- Alder reaction				
47	Unit 3	Revision on completion of the unit				

48	Unit 4	Alkynes and Alkyl Halides : Nomenclature, structure and bonding of alkynes			
49	Unit 4	Aethods of formation, chemcial reactions			
50	Unit 4	idity of alkynes, Mechanism of electroplilic and nucleophilic addition reaction			
51	Unit 4	hydroboration oxidation, metal- ammonia reduction- oxidation			
52	Unit 4	ymerization of alkynes			
53	Unit 4	Nomenclature and classification of alkyl halides			
54	Unit 4	methods of formation, chemical reactions			
55	Unit 4	Mechanism of nucleophilic substitution reaction of alkyl halides			
56	Unit 4	SN 1 and SN 2 reaction with energy profile diagrams			
57	Unit 4	Elimination reaction			
58	Unit 4	Polyhalogen compounds : methods of preperation			
59	Unit 4	properties of chloroform and carbon tetrachloride			
60	Unit 4	Revision on completion of the unit			
61	Unit 5	Stereochemistry of Organic compounds : Concept of isomerism			
62	Unit 5	types of isomerism			
63	Unit 5	optical isomerism, elements of symmetry			
64	Unit 5	moleculare chirality			
65	Unit 5	enantionmers, stereogenic centre			
66	Unit 5	optical activity, properties of enantiomers			
67	Unit 5	chiral and achiral molecules with two stereogenic centres			
68	Unit 5	diastereomers, threo and erthro enantiomers			
69	Unit 5	inversion, retention and racemization			
70	Unit 5	Relative and absolute configuration, sequence rule			
71	Unit 5	D & L and R & S systems of nomenclature			
72	Unit 5	Geometrical isomerism - determination of configuration of geometric isomers			
73	Unit 5	E & Z system of nomenclature			
74	Unit 5	geometric isomerism in oximes and alicyclic compounds			
75	Unit 5	Revision on completion of the unit			

Maharaja Ranjit Singh College of Professional Sciences, Indore

Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2020 - April 2021)

Subject - Chemistry Practical Teacher - Prof. Deepanshu Pandey

Day/Lecture	y/Lecture Unit Topic		
1		Physical Chemistry : An introduction	
		(A) Any one experiment :	
2		(i) Determination of melting point	
3		(ii) Determination of boiling point	
4		(iii) Weighing and preparation of solution	
		(B) Any one experiment :	
5		(i) Determination of surface tension/percentage composition of given liquid mixture using surface tension method	
6		(ii) Determination of viscocity/ percentage composition of given liquid mixture using viscocity method.	
7		Inorganic Chemistry : An introdution	
8 to 18		(i) Inorganic mixture analysis	
		Mixture analysis for 2 cation and 2 anions	
19 to 20		(ii) Separation of cations by paper chromatography	
		Organic Chemistry (Any two)	
21		(i) Crystallization	
22		(ii)Sublimation	
23 to 25		(iii) Detection of elements	
26 to 32		(iv) Identification of functional group	

		Maharaja Ranjit Singh College of Professional Sciences, Indore
		Department of Chemical Science
		Lesson Plan - B.Sc. II Year (July 2020 - April 2021)
		Subject - Chemistry Paper I(Physical Chemistry)
		Teacher - Prof. Seema Shintre
Day/Lecture	Unit	Торіс
	1	Thermodynamics
1		Basic concepts - system, surrounding, Extensive and intensive properties, types of process,
2		Exothermic and Endothermic process, reversible and irreversible process, Internal energy
3		First law of thermodynamics, Enthalpy, Heat and work
4		Molar heat capacity, Joule Thomson effect and its coefficient
5		Expansion of ideal gases for isothermal and adiabatic process
6		Second law of thermodynamics, Carnot cycle
7		Carnot theorem, thermodynamic scale of temprature
8		Concept of Entropy and entropy change in Carnot cycle
9		Entropy change of ideal gas in term of P &T and V &T
10		Physical significance of entropy, Claussius inequility
11		Entropy of mixing, entropy and probability
12		Third law of thermodynamics (Nernst heat theoram), work function
13		Concept of Free energy and Gibb's Helmholtz equation in term of work function and internal energy
		and in term of Free energy and enthalpy
		Thermochemistry
14		Hess's law and Heat of reaction
15		Bomb colorimeter, Heat of neutralization
16	-	Bond energy and its factors, Kirchaff's equation
	2	Phase Equilibrium
17		Statement and the meaning of terms: phase, component and the degree of freedom
18		Thermodynamic derivation of the Gibbs phase rule
19		One component system: water system, CO2 system
20		Sulphur system
21		Two component system: solid liquid equilibrium, simple eutectic system: Bi-Cd system
22		Pb-Ag system and desilverisation of lead
23		Solid solution
23		Type B system: Zn-Mg system NaCl-H2O system, copper sulphate water system
24		Liquid liquid mixture
25		Raoult's law and Henry's law
25		Ideal and non-ideal solutions
27		Azeotrops: HCl-H2O and ethanol water system
		Partial miscible liquids
28		Phenol-water, trimethylamine-water and nicotine-water system
29		Lower and upper consolute temperature, steam distillation
30		Nernst distribution law: thermodynamic derivation, application.
	3	Electrochemistry-I
31		Electrical transport, conduction in metal and electrolyte solutions
32		Resistance, conductance, Specific and equivalent conductivity
33		Measurment of equivalent conductance, effect of dilution on conductivity
34		Migration of ions and Kohlrausch law and application
35		Arrhenius theory of electrolyte dissociation and its limitations
36		Weak and strong electrolytes, Ostwald's dilution law
37		Debye Huckel theoryad DHO equation
38		Transport number, Hittorf method
39		Moving boundary method
	4	Electrochemistry-II
40		Basic concept and Reversible electrodes
41		Nernst equation, referance electrode
42		Standard hydrogen electrode(Gas electrode)
43		Calomel electrode(metal insoluble salt electrode)
44		Types of electrochemical cell
45		Application of EMF
46		Electrochemical series and its significance

Potentiometric titration, concentration cell with and without transport Relation between pH, pOH and pkw, Buffer solution and its type

47 48

49		Henderson's equation, salt hydrolysis- salt of strong acid and strong base	
50		salt of strong acid and weak base	
51		salt of weak acid and strong base	
52		salt of weak acid and weak base	
	5	Surface chemistry	
53		Adsorption, absorption, types of adsorption	
54		adsorption of gases and liquid in solid adsorbate	
55		Freundlich and langmuir adslorption isotherm	
56		Surface area and determination of surface area	
57		Catalysis- Characteristics of catalyzed reactions, classification of catalysis	
58		Application of catalysts, miscellaneous examples	

Maharaja Ranjit Singh College of Professional Sciences, Indore

Department of Chemical Science

Lesson Plan - B.Sc. II Year (July 2020 - April 2021) Subject - Chemistry Paper II (Inorganic Chemistry)

ubject -	Chemistry	Paper II	(Inorganic	Chemistry)	
----------	-----------	----------	------------	------------	--

Teacher - Prof. Seema Shintre			
Day/Lecture	Unit	Торіс	
	1	Chemistry of elements of first transition series	
1		Characteristics properties of d-block elements- electronic configuration, metallic character	
2		variable oxidation state, colour formation, atomic and ionic radii	
3		complex formation, magnetic property	
4		Catalytic property, formation of interstitial compounds	
5		Binary compounds- oxides	
6		sulphides and halides, carbides	
7		complexes illustrating relative stability of their oxidation states, co-ordination number and geometry	
	2	Chemistry of elements of second and third transition series	
8		General introduction, characteristics- electronic configuration, atomic and ionic radius	
9		Lanthenide contraction, variable oxidation states	
10		Magnetic nature, term symbol, L-S coupling	
11		magnetic succeptibility and its determination by Gouy method	
12		Spectral nature, stereochemistry	
	3	Co-ordination compounds	
13		General introduction, Werner's co-ordination theory and its experimental verification	
14		Nomenclature of co-ordination compounds	
15		Sigdwick electronic concept of co-ordinate bond, Effective atomic number concept	
16		Chelates, inner metallic complex	
17		Isomerism in co-ordination compounds, structural isomerism	
18		stereoisomerism- geometrical and optical isomerism	
19		Valance bond theory of transition metal complex- octahedral complex	
20		Tetrahedral and square planner complex	
		Oxidation and Reduction	
21		oxidation and Reduction, redox reaction, singal electrode potential	
22		redox cycle, redox stability of water- Frost diagram	
23		Latimer and Pourbaix diagrams.	
24		Basic principle in the extraction of metals	
	4	(a) Chemistry of Lanthanide elements	
25		electronic structure, oxidation states	
26		ionic radii and lanthanide contraction	
27		complex formation occurrence and isolation	
28		lanthanide compounds	
-		(b) Chemistry of Actinides	
29		General features and chemistry of actinides	
30		chemistry of Np, Pu and Am from U, Similarities between lanthanides and actinides	
	5	Acids and Bases	
31	-	Arrhenius concept, Bronsted-Lowry concept	
32		Solvent system and Lewis concepts of acids and bases	
33		Lux-Flood theory, Physical properties of a solvent	
34		Types of solvents and their general characteristics	
35		Reactions in non-aqueous solvents with reference to liquid NH3	
36		Reactions in non-aqueous solvents with reference to liquid VIIS	

I	Maha	raja Ranjit Singh College of Professional Sciences, Indore			
		Department of Chemical Science			
		Lesson Plan - B.Sc. II Year (July 2020 - April 2021)			
Subject - Chemistry Paper III (Organic Chemistry)					
		Teacher - Prof. Seema Shintre			
Day/Lecture	Unit	Торіс			
Day/Lecture	1	Electromagnetic Spectrum: Absorption spectra			
1	1	basic concept of spectroscopy			
2		Beer Lambert law			
3		Molar absorptivity, Presentation and analysis of UV spectra			
4		Types of electronic transitions			
5		effect of conjugation, concept of chromophore and auxochrome			
6		Bathochromic, hypsochromic, Hyperchromic and hypochromic shifts			
7		UV spectra of conjugated enes and enones			
8		IR absorption spectroscopy- Molecular vibrations			
8 9		Hookes law, selection rules			
9 10		intensity and position of IR bands			
10		Measurement of IR spectrum, finger print region			
11		Cheracteristic absorption of various functional groups			
13	2	Interpretation of IR spectra of simple organic compounds			
1.4	2	(a) Alcohols			
14		Classification and nomenclature			
15		Monohydric alcohols- nomenclature, methods of formation			
16		reduction of aldehydes,Ketones,carboxylic acids and esters			
17		Hydrogen bonding, acidic nature			
18		reaction of alcohols			
19		Dihydric alcohols- nomenclature, methods of formation			
20		chemical reactions of vicinal glycols			
21		oxiidative cleavage and pinacol-pinacolone rearrangement			
22		Trihydric alcohols- Nomenclature, methods of formation			
23		chemical reactions of glycerols			
24		(b) Phenols			
25		Nomenclature, structure and bonding			
26		Preparations of phenols, physical properties and acidic characters			
27		comparative acidic strength of alcohols and phenols			
28		resonance stablization of phenoxide ions, reactions of phenols			
29		electrophilic aromatic substitutions, acylation and arboxylation			
30		mechanism of Fries rearrangement, Claisen rearrangement			
31		Gatermann synthesis, Hauben- Hoesche reaction			
32		Lederer Manasse reaction and Reimer Teiman reaction			
	3	Aldehydes and Ketones			
33		Nomenclature, structure of the carbonyl group			
34		synthesis of aldehydes and ketones - synthesis of aldehyde from acid chlorides			
35		synthesis of aldehyde and ketone from 1,3 dithianes			
36		synthesis of ketones from nitrilles and carboxylic acids			
37		physical properties			
38		mechanism of reactions- Aldol condensation and benzoin condensation			
39		Perkin reaction and Knoevengel condensations			
40		condensation with ammonia nd its derivatives			
41		Wittig reaction and Mannich reaction			
42		Use of acetals as protecting groups, oxidation of aldehydes			

43		Baeyer-Villiger oxidation of ketones, cannizaro reaction	
44		MPV, Clemmenson, Wolf Kischner reaction	
45		LiAlH4 and NaBH4 reduction, Helogination	
46		An introduction to alfa, beta unsaturated aldehyde and ketones	
	4	(a)Carboxylic acids	
47		Nomenclature ,structure and bonding	
48		physical properties and acidity of carboxylic acids	
49		Preparation and reactions of carboxylic acids	
50		HVZ reaction, synthesis of acid chloride, esters and amides	
51		reduction of carboxylic acids, Mechanism of decarboxylation	
52		Methods and chemical reactions of halo acids, hydroxyl acid	
53		Malic acid, tartaric acid, citric acids	
54		Methods and chemical reactions of unsaturated monocarboxylic acids,	
55		Dicarboxylic acids	
		(b) Ether	
56		Nomenclature of ether and methods of formation	
57		physical properties and chemical reactions	
58		Cleavage and auto oxidation, Zeisels method	
	5	Organic compounds of nitrogen	
59		Preparation of nitro-alkanes and nitro arene	
60		Chemical reactions of nitro-alkanes	
61		Mechanism of nucleophilic substitution in nitro-arenes	
62		Reductions in neutral acidic and alkaline media	
63		Haloarenes: Reactivity, Structure and nomenclature of amines	
64		Physical properties, stereochemistry of amines	
65		Seperation of mixture of primary, secondary and tertiary amines, basicity of amines	
66	1	Amine salts as phase transfer catalyst, Preparation of alkyl and aryl amines	
67	1	Gabrial Phthalimide reaction, Hoffmann-Bromamide reaction	
68		Reaction of amines, electrophilic aromatic substitution in aryl amines	
69		Reactions of amines with nitrous acid, Synthetic transformations of aryl diazonium salt	
	-	Azo coupling	

	Maharaja Ranjit Singh College of Professional Sciences, Indore				
	Department of Chemical Sciences				
	Lesson Plan - B.Sc. II Year (July 2020 - April 2021)				
		Subject - Chemistry Practical			
		Teacher - Prof. Seema Sintre			
Day/Lecture	Unit	Торіс			
		Inorganic Chemistry			
1		Analysis of inorganic mixture containing five radicals with at least on interfering radicals			
2		Determination of acetic acid in commercial vinager using NaOH			
3		Redox Titration			
4		Estimation of hardness of water by EDTA			
		Physical Chemistry			
5		Determination of transition temperature of given substance by thermometric method			
6		To determine the enthalpy of neutralization of strong acid strong base			
7		Verification of Beer's- Lambert law			
8		To study the phase diagram of two component system by cooling curve method			
		Organic Chemistry			
9		Identification of an organic compound through the functional group analysis, determination			
		of melting point and preparation of suitable derivatives.			
10		Use of Paper chromatography/ Thin layer chromatography:			
		Determination of Rf values, seperation and identification of organic compounds.			
11	а	Seperation of green leaf pigments			
12	b	Seperation of dyes			

Maharaja	a Ranjit	Singh College of Professional Sciences, Indore
		Department of Chemical Science
Lesson Plan - B.Sc. III Year (July 2020 - April 2021)		
		Subject - Chemistry Paper I
		Teacher - Dr. Lal Kumar
Day/Lecture	Unit	Торіс
1	Ι	A. Elementary Quantum Mechanics:
2	Ι	Black Body Radiation
3	Ι	Planck's radiation law
4	Ι	Photoelectric effect
5	Ι	Heat capacity of Solids
6	Ι	Bohr's Model of Hydrogen atom (no derivation) and its defects
7	Ι	Compton effect
8	Ι	de-Broglie hypothesis
9	Ι	The Heisenberg's uncertainty priciple
10	Ι	Sinusoidal wave equation
11	Ι	Hamiltonian Operator
12	Ι	Schrodinger wave equation and its importance
13	Ι	Physical interpretation of the wave function
14	Ι	Postulate of quantum mechanics
15	Ι	Particle in a one dimentional box
16	Ι	B. Molecular orbital theory
17	Ι	Basic ideas criteria for forming molecular orbital(MO) from A.O.
18	Ι	Construction of MO's by LCAO-H2 ion
19	Ι	Calculation of energy level from wave function
20	Ι	Physical picture of bonding and antibonnding wave functions
21	Ι	Concept of sigma, sigma star, pi, pi star calculation of coefficient of AO's used in these hybrid orbitals
22	Ι	Introduction to Valence bond model of H2 ion
23	Ι	Comparison of M.O. and V.B. models
24	II	Spectroscopy
25	Π	Introduction of electromagnetic radiation
26	Π	Region of the Spectrum
27	II	Basic features of different spectrometers
28	Π	Statement of the Born-Oppenheimer Approximation
29	Π	Degree of Freedom
30	Π	Rotational Spectrum
31	Π	Diatomic Molecules
32	II	Energy levels of a rigid rotator (Semi-classical principles)
33	II	Selection Rules

34	Π	Spectral Intesities
35	II	Distribution using population distribution
36	Π	Maxwell-Boltzmann Distribution
37	II	Determination of bond length
38	Π	qualitative description of non-regid rotator
39	II	Isotopic effect
40	II	Vibrational Spectrum
41	Π	Infra-red spectrum
42	II	Energy level of simple harmonic oscillator
43	Π	Selection Rules
44	II	Pure Vibrational Spectrum
45	II	Spectral Intesities
46	Π	Determination of force constant and bond energies
47	Π	effect of an harmonic motion and
48	II	Isotop on the spectrum
49	II	Idea of vibrational frequencies of different functional groups
50	III	Raman spectrum
51	III	Concept of polarisabilities
50	TT	Pure Rotational and Pure Vibrational Raman spectra of diatomic
52	III	molecules
53	III	Selection Rules
54	III	Application to Raman Spectra
55	III	Electronic Spectrum
56	ш	Concept of potential energy curves for bonding and antibonding
56	III	molecular orbitals
57	III	Qualitative description of selection rules
58	III	Franck-condon principle
59	III	Qualitative description of sigma, pi, and n M.O. their energy
39		levels and their Transition
60		UV Spectroscopy
61	III	Electronic Excitation
62	III	Elementary idea of instrument used
63	III	Application to Organic Molecules
64	IV	Woodward-Fieser Rule for determining lemda max of enes,
04	1 V	polyenes and alfa, beta-unsaturated carbonyl compouds
65	IV	Photochemistry
66	IV	Interaction of radiation with matter
67	IV	difference between thermal and photochemical processes
68	IV	law of photochemistry
69	IV	Grothus-Drapper Law
70	IV	Stark-Einstein Law
71	IV	Jablonski Diagram depicting various processes occurring in the
71	11/	

72	IV	Qualitative description of fluorescene
73	IV	Phosphorescence, Non-radioactive processes
74	IV	Internal conversion, Intersystem crossing
75	IV	Quantum Yield
76	IV	Photosensitised reaction energy transfer processes
77	IV	Simple examples
78	V	Physical Properties and Molecular Structure
79	V	Optical Activity
80	V	Polarisation (Clausius-Mossotti equation)
81	V	Orientation of dipoles in an electric field
82	V	Dipole moment, Induced dipole moments
83	V	Measurement of dipole moment
84	V	Temparature Method and Refractive method
85	V	Magnetic Properties
86	V	Paramagnetism, Diamagnetism and ferromagnetism

Maharaja Ranjit Singh College of Professional Sciences, Indore			
	Department of Chemical Science		
	Lesson Plan - B.Sc. III Year (July 2020 - April 2021)		
		Subject - Chemistry Paper II	
		Teacher - Dr. Lal Kumar	
Day/Lecture	Unit	Торіс	
1	Ι	A. Hard and Soft Acids and Bases (HSAB)	
2	Ι	Introduction: Classification of Hard and soft acid-base	
3	Ι	Hard and soft acid-base concept of pearson	
4	Ι	Application of hard-soft acid base theory	
5	Ι	Symbosis	
6	Ι	Acid-base strength and hardeness and softness	
7	Ι	Theoretical basis of hardness and softness	
8	Ι	Electronic theory	
9	Ι	Pi-bonding theory and Dragowayland theory	
10	Ι	Electronegativity and hardness and softness	
11	Ι	Limitation of hard soft acid-base concept	
12	Ι	B. Silicones and Phosphazenes	
13	Ι	Introduction: Silicones methods of preparation, Classification,	
15	1	properties and applications	
14	Ι	Phosphazenes(Phosphonitrilic Chloride) Methods of preparation	
17	1	and properties	
15	Ι	Structure of Triphosphazenes	
16	Ι	Some other phosphazenes and uses of phosphazenes	
17	II	A. Metal Ligand Bonding in Transition Metal Complexes	
18	II	Introduction:limitation of valence bond theory	
19	II	Crystal Field Theory	
20	п	Crystal Field Splitting of d-orbitals, d-orbital splitting and	
20	П	stabilisation energy in octahedral, Tetrahedral and square planner complexes	
21	II	Factor affecting the crystal field parameters	
22	II	Applications of crystal field theory and limitation of crystal field	
		theory	
23	II	B. Thermodynamic and Kinetic Aspects of Metal Complexes	
24	Π	Introduction: Thermodynamic aspects of metal complexes	
25	II	factor affecting thermodynamic stability of complexes	
26	П	Kinetic aspects of metal complexes and factor affecting the rate of	
20		substitution reactions in square planner complexes	
27	III	Magnetic Properties of Transition Metal Complexes	
28	III	Introduction: Types of Magnetic behaviour	

29	III	Diamagnetism, Paramagnetism, Ferromagnetism,
	111	Antiferromagnetism, Ferrimagnetism Origin and calculation of magnetism
30	III	Origin and calculation of magnetism
31	III	Methods of determining magnetic susceptibility
32	III	Quincke's Curie and Nuclear magnetic resonance method
33	III	Magnetic moment:L-S coupling
34	III	determination of ground state term symbol
35	III	Correlation of mu and mu effect values
36	III	Orbital contribution to magnetic moments and
37	Ш	Application of Magnetic moment data for 3d-metal complexes
38	IV	A. Electronic Spectra of Transition Metal Complex
39	IV	Introduction: Type of electronic transition
40	IV	Selection rules for d-d trasitions
41	IV	spectroscopic ground state in complexes
40	IV.	Spectrochemical Series, Orgal energy level diagram used in
42	IV	octahedral and tetrahedral complexes having d1 to d9 states
43	IV	Electronic Spectrum of [Ti(H2O)6]3+ complex ion
44	IV	B. Organometallic Chemistry
45	IV	Introduction:Nomenclature and Classification of Organometallic Compounds
46	IV	General Methods of preparation: Alkyl and aryl organometallic compounds of Lithium: Preparation, Properties, Bond Nature and application organometallic compound of Al, Hg, Sn, Ti
47	V	A. Bio-Inorganic Chemistry
48	V	Introduction:Essential and trace elements in biological processes
49	V	Biological function of the bio-elements
50	V	Availability of Bio-metals and bio-non-metals
51	V	Metalloporphyrins
52	V	Haemoglobin structure and biological function
53	V	Myoglobin-mechanism of oxygen transfer through haemoglobin and myoglobin
54	V	Relation between haemoglobin and myoglobin
		Biological role of alkali and alkaline earth metal ions with special
55	V	reference to Ca2+
56	V	Nitrogen Fixation
57	V	B. Metal Nitrosyl Complex
58	V	Nitrosyl agents, synthesis, structure Properties and bonding

Maharaja Ranjit Singh College of Professional Sciences, Indore		
Department of Chemical Science		
Lesson Plan - B.Sc. III Year (July 2020 - April 2021)		
		Subject - Chemistry Paper III
		Teacher - Dr. Lal Kumar
Day/Lecture	Unit	Торіс
1	Ι	Nuclear Magnetic Resonance Spectroscopy
2	Ι	Proton Magnetic Resonance Spectroscopy
3	Ι	Nuclear Shielding and Dis-shielding
4	Ι	Chemical Shift and Molecular Structure
5	Ι	Spin -spin coupling and coupling costant
6	Ι	Region of the signals
7	Ι	Explanation of PNMR spectra of simple organic molecules
8	Ι	eg ethanol, ethyl bromide, acetaldehyde, 1,1,2-tribromo ethane,
0	1	ethylacetate, Toluene, and acetophenone
9	Ι	Application of UV, IR, and PNMR spectroscopy for simple
,	1	organic compounds
10	II	A. Organo-mettalic Compounds
11	II	Organo-magnesium compounds: Grignard Reagent
12	II	Preparation, structure and chemical reactions
13	II	Organo-zinc compounds: preparation and chemical reactions
14	Π	B. Organo-sulphur compounds : Nomenclature, Structural characteristics thiol, thio-ether, sulphonic acid, sulphonamide and sulphaguanidine method of preparation and chemical reactions
15	II	C. Organic synthesis by enolates:
16	II	Acidity of hydrogen
17	II	alkylation of diethyl malonate and ethyl acetoacetate
18	II	Synthesis of ethylacetoacetate
19	Π	Claisen condensation
20	Π	Keto-enol toutomerism form in ethylacetoacetate
21	II	Alkylation of 1,3-dithiane
22	II	Alkylation and acetylation of enamine
23	III	A. Carbohydrates
24	III	Classification and nomenclature
25	III	monosaccharides
26	III	Mechanism of Osazone formation
27	III	Inter conversion of glucose into fructose
28	III	Ascending and descending series in aldose
29	III	Configuration of monosaccharides
30	III	Stereo isomers of erythro and theo sugars
31	III	Conversion of glucose into mannose

		Change determination of the size of the ring of
32	III	Glycosides, determination of the size of the ring of monosachharides
22	тт	
33	III	Ring structure of D(+) glucose
34	III	Mechanism of mutarotation
35	III	Structure of ribose and deoxyribose
36	III	Disaccharides introductory idea of maltose, sucrose, and lactose
		(excluding structure)
37	III	Polysaccharides introductory idea of starch and
		cellulose(Excluding Structure)
38	III	B. Fat, Oil and Detergents:
39	III	Natural fat, edible and industrial oil of plant origin
40	III	Normal fatty acids, glycerides
41	III	Hydrogenation of unsaturated oil
42	III	Sponification value, iodine value and acid value
43	III	Synthetic Detergents: Alkyl and aryl sulphonate
44	IV	A. Amino Acids, Peptide, Protein and Nucleic Acid
45	IV	Classification of Amino Acid
46	IV	Structure stereo chemistry
47	IV	Acid base behavior isoelectric point and electrophoresis
48	IV	Preparation and chemical reaction of alpha amino acids
49	IV	Nomenclature and structure of peptide and proteins
50	IV	Classification of proteins,
51	IV	Determination of peptide structure
52	IV	end group analysis
53	IV	Selective hydrolysis of peptides
54	IV	Peptide synthesis, solid phase peptide synthesis
55	IV	Structure of peptide and proteins
56	IV	level of proteins structure
57	IV	denaturation of proteins
58	IV	Nucleic Acids: constitution of nucleic acid
59	IV	Ribonucleoside and ribonucleotide
60	IV	Double helix stucture of DNA
61	IV	B. Synthetic Dyes:
62	IV	Colour and constitution (electronic concept)
63	IV	Classification of dyes
64	IV	Methyl Orange
65	IV	Congored
66	IV	Malachite Green
67	IV	Crystal Violet
68	IV	Phenolphthalein
69	IV	Fluoroscein
70	IV	Alizarine and Indigo dyes
70	V	Heterocyclic compounds
/1		

		Intersteed of Classification and stars America Class	
		Introduction, Classification nomenclature, Aromatic Character	
72	V	and molecular orbital picture of Pyrrole, Furan, Thiophene and	
		Pyridine	
73	V	Furan:Preparation, Properties, Structure	
74	V	Thiophene:Preparation, Properties, Thiophene as a Resonance hybrid	
75	V	Pyrrole: Preparation, Properties, Orbital Structure, Orientation in	
15	v	pyrrole in electrophilic substitution reaction	
76	V	Six atom heterocyclic compounds:Pyridine, synthesis, orientation in pyridine substitution reactions, properties, uses, structure	
77	V C	Condensed ring systems: Indole, Synthesis, Properties amd	
77	V	Reactions	
78	V	Quinoline:Preparation, Properties, uses and constitution of	
	V	quinoline	
79	V	Isoquinoline:Preparation, Properties, uses and constitution of	
	V	Isoquinoline, Exercises	

Maharaja Ranjit Singh College of Professional Sciences, Indore		
Department of Chemical Sciences		
Lesson Plan - B.Sc. III Year (July 2020 - April 2021)		
Subject - Chemistry Practical		
		Teacher - Dr. Lal Kumar
Day/Lecture	Unit	Торіс
1	I	Inorganic Chemistry
2	Ι	A. Gravimetric Analysis:
3	Ι	Barium as Barium Sulphate
4	Ι	Copper as cuprous-thiocynate
5	Ι	B. Complex Compound Preparation
6	Ι	i) To prepare and submit Potassium Chlorochromate(IV)
7	Ι	ii) To prepare and submit Tetra amine copper (II) sulphate monohydrate
8	Ι	iii) To prepare and submit Hexaaminenickel(II)chloride
	-	C. Effluent water Analysis : To identify cation and anion in
9	Ι	given different water samples.
		D. Water Analysis : To determine dissolve oxygen in given
10	Ι	water sample in ppm
11	II	Physical Chemistry
	II	To determine the velocity constant(specific reaction rate) of
12		hydrolysis of methyl acetate/ ethyl acetate catalysed by
		hydrogen ions at room temparature.
12	тт	To determine the partition coefficient of iodine between
13	II	carbon tetra chloride and water.
14	II	To find out the complex by Job's methods
15	II	pH-titration
16	II	Conductometric titration
17	III	Organic Chemistry
18	III	To separate and identify organic mixture having two solids organic compounds and also prepare their derivatives
19	III	Preparation
20	III	A. Acetylation
21	III	B. Benzoylation
22	III	C. m-dinitrobenzene
23	III	D. Picric Acid